A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.

نویسندگان

  • J S Wiley
  • R A Cooper
چکیده

The influxes of Na(+) and K(+) into the human red cell appear to be interrelated. This relationship was investigated under conditions in which either Na(+) or K(+) concentration outside the cell was varied or one cation was replaced by Mg(2+), choline(+), or Li(+). The effects of furosemide on Na(+) and K(+) movements were studied in the presence of ouabain. When ouabain was present, Na(+) influx was higher with K(+) ions externally than with other cations externally. Furosemide inhibited this K(+)-stimulated Na(+) influx, but it had little effect when K(+) was absent. Ouabain-insensitive K(+) influx was stimulated two-fold by external Na(+) compared with other cations. Furosemide also inhibited this stimulation, but it had little effect when Mg(2+) or choline(+) replaced external Na(+). Thus it was confirmed that synergism exists between the ouabain-insensitive influxes of Na(+) and K(+) and it was demostrated that furosemide inhibits this cooperative effect. The ouabain-insensitive influx of both K(+) and Na(+) showed a hyperbolic "saturating" dependence on the external concentration of the transported cation. Furosemide therefore eliminates a saturable component of influx of each cation. The net uptake of Na(+) in the presence of ouabain was stimulated by K(+) ions. A similar effect was observed with red cells, in which Li(+) replaced nearly all the internal Na(+) plus K(+) ions. In these cells, net Na(+) uptake was stimulated by external K(+), and net K(+) uptake was stimulated by external Na(+). Furosemide inhibited this mutual stimulation of net cation entries. The inhibitory action of furosemide was not limited to inward flux and net movement of Na(+) and K(+). Furosemide also inhibited the efflux of Na(+) into Na(+)-free media and the efflux of K(+) into K(+)-free media. It appeared, therefore, that the action of furosemide was not explained by inhibition of exchange diffusion. These data are consistent with an ouabain-insensitive transport process that facilitates the inward cotransport of Na(+) plus K(+)-ions, and that can produce a net movement of both ions. Although this process under some conditions mediates an equal bidirectional flux of both Na(+) and K(+), it cannot be defined as exchange diffusion. The contransport process is inhibited by furosemide.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport

Catecholamines induce net salt and water movements in duck red cells incubated in isotonic solutions. The rate of this response is approximately three times greater than a comparable effect observed in 400 mosmol hypertonic solutions in the absence of hormone (W.F. Schmidt and T. J. McManus. 1977 a.J. Gen. Physiol. 70:59-79. Otherwise, these two systems share a great many similarities. In both ...

متن کامل

Red cell lithium-sodium countertransport and sodium-potassium cotransport in patients with essential hypertension.

Alterations in sodium countertransport and cotransport have been reported in red cells of patients with essential hypertension. We have investigated the relationship between these two systems by performing simultaneous measurements of the maximal rates of lithium-sodium (Li1-Na0) countertransport and outward sodium-potassium (Na-K) cotransport in red cells from normotensive and hypertensive sub...

متن کامل

Cotransport of lithium and potassium in human red cells

This paper reports the presence of human red cells of an additional ouabain-insensitive transport pathway for lithium ions, the Li-K cotransport. Several kinds of observations support this conclusion. Cells loaded to contain only K, Na, or Li do not exhibit furosemide-sensitive efflux. Simultaneous presence of K and Li on the same side of the membrane mutually stimulates furosemide-sensitive Li...

متن کامل

Red cell cotransport activity and sodium content in black men.

Furosemide-sensitive sodium and potassium cotransport and intracellular sodium content ([Na]i) were measured in erythrocytes (red blood cells, RBCs) from a population of 90 adult black men with and without essential hypertension (EH). The mean values for sodium cotransport activity, expressed as furosemide-sensitive Na efflux (mmol/liter RBC/hr), were not significantly different among the EH pa...

متن کامل

Red blood cell Na+ transport as a predictor of blood pressure response to Na+ load in young blacks and whites.

The present study was designed to investigate the role of abnormalities in red blood cell sodium-potassium-chloride (Na-K-Cl) cotransport and Na+ pump as predictors of the pressor response to chronic oral Na+ loading in young whites and blacks. Subjects were healthy adults from 18 to 23 years of age and included normotensive whites (n = 24) and normotensive blacks (n = 35). Red blood cell trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 1974